

Bilkent University

Department of Computer Engineering

Senior Design Project
Project Name: StudyB
Final Report

Alara Yaman
Berfu Deniz Kara
Betim Doğan
Mert Özerdem
Sera Fırıncıoğlu

Supervisor: Özcan Öztürk

Innovation Expert: Aras Bilgen

Jury Members: Varol Akman and Eray Tüzün

Final Report May 26, 2020

This report is submitted to the Department of Computer Engineering of Bilkent University in partial fulfillment of the
requirements of the Senior Design Project course CS491/2.

Table of Contents

Abstract 4

1) Introduction 5

2) Requirements Details 5
2.1) Functional Requirements 5
2.2) Nonfunctional Requirements 6

2.2.1) Usability 6
2.2.2) Reliability 7
2.2.3) Privacy 7
2.2.4) Flexibility 7
2.2.5) Portability and Accessibility 7

3) Final Architecture and Design Details 8
3.1) Backend Architecture 8

3.1.1) MSSQL Server Architecture 8
3.1.2) Backend Package Diagram 9

3.1.2.1) Data Layer Package 10
3.1.2.1.1) Entities Package 11
3.1.2.1.2) Models Package 12

3.1.2.2) Service Layer Package 14
3.1.2.3) Business Layer 17
3.1.2.4) Mapping 19
3.1.2.5) DbContext 20

3.2) Frontend Architecture 21
3.2.1) Class Diagram 21
3.2.2) Use Case Diagram 26

4) Development/Implementation Details 28
4.1) Backend Development 28
4.2) Frontend Development 29

5) Testing Details 30
5.1) Backend 30

5.1.1) Postman 30
5.1.2) Visual Studio Debugger 30

5.2) Frontend 31

6) Maintenance Plan and Details 31

7) Other Project Elements 32

7.1) Consideration of Various Factors 32
7.2) Ethics and Professional Responsibilities 33
7.3) Judgements and Impacts to Various Contexts 34
7.4) Teamwork and Peer Contribution 35

7.4.1) Backend Peer Contribution 37
7.4.2) Frontend Peer Contribution 38

7.5) Project Plan Observed and Objectives Met 41
7.6) New Knowledge Acquired and Learning Strategies Used 42

7.6.1) Things We Learned 42
7.6.1.1) React Native 42
7.6.1.2) Visual Studio Code 42
7.6.1.3) Github 42
7.6.1.4) NodeJs 43
7.6.1.5) Npm 43
7.6.1.6) Expo CLI 43
7.6.1.7) Visual Studio 43
7.6.1.8) Postman 43
7.6.1.9) Asp.Net 44
7.6.1.10) Entity Framework Core 44
7.6.1.11) Microsoft Azure 44
7.6.1.12) WebStorm 44

7.6.2) Our Learning Strategies 44

8) Conclusion and Future Work 45

9) Glossary 46
9.1) User Manual 46

10) References 49

Abstract
This is the final report of the project called StudyB. StudyB is a mobile application which

aims to create a student based study platform where specific courses can be added and

study with others by creating communication via posts and chats where documents can

be shared. In this report; details on requirements, final architecture and design,

development and implementation, testing, maintenance plan, other project elements and

future work of the project will be given in order.

The link to StudyB’s website is : https://serafirincioglu.github.io/studyb/

https://serafirincioglu.github.io/studyb/

1) Introduction

Access to the Internet has a great impact on studying since the early 2000s. But

especially after online messaging become popular and sending files such as photos,

pdfs ect via computers and cellphones become available, online communication is the

key for asking help and getting help for studying.

Sure, there are some websites for studying but they don’t usually offer a community

based user interface and most of them require monthly payment. There are some

websites such as Moodle that universities use for some of their courses to share course

material and announcements but Moodle is under the control of the teacher not the

student.

Our app, StudyB, offers a student friendly study environment with a user friendly user

interface which can be used via phones. The name StudyB comes from study bee which

implies that sharing is caring just like all the bees work for the nest and the nest takes

care of every single bee.

StudyB works as an online environment to study where you can get in touch with

other people in your university via posts and chats and can share study based files. To

sign up to StudyB you have to have a Bilkent email. After signing up, users can enroll in

any courses that are available on the app.

2) Requirements Details

2.1) Functional Requirements

● Users will create an account with their Bilkent webmail accounts (with the

ug.bilkent.edu.tr extension).

● Users will select the specific department and course of Bilkent University that

they want to enroll in.

● Users are going to be directed to the main page of the selected course.

● Users can make comments on the posts on the main page.

● Users can ask questions about the course.

● Users can share documents such as pdf’s, images, etc. about the midterms,

quizzes, homework, etc. on the main page of the course.

● Users can export their calendar to the application to take the exam tips

notifications.

● Users can take general tips for their assigned courses as a notification. If they do

not want to take, they can make that course feature disable from settings.

● Users can enroll in the study buddy feature by clicking a button on the main page.

● Users can start a new conversation with their study buddy in a chat room.

● According to the users activities, a score list will be created to identify lurkers and

students who contribute most.

● Top three contributor students are going to be seen on the score list and the top

student is going to be called as the master of that course.

● If users do not want to be seen in the score list, she/he can make her/his

nickname invisible in the list.

● Lurkers can be identified from this score list if they do not contribute for a month

and after that, they will be in the suspension period as a punishment.

2.2) Nonfunctional Requirements

2.2.1) Usability

● StudyB will have a minimalist user interface in its main page therefore it will be

easy to use and learn.

● Google calendar is going to be able to be added to the account if the user prefers

to follow midterms, finals.

● Feedbacks will be taken into consideration to develop the application better.

2.2.2) Reliability

● StudyB will not allow any user from outside of Bilkent University.

● StudyB should be used any time as a stable system and should avoid any crash.

● StudyB should prevent lurkers from the system for the best usage

2.2.3) Privacy

● StudyB do not share users information to third party ottoritees

● User information will be private including their email address and private

messages between two users in chat rooms. Also, if the user desires, nicknames

will be unseen and a random number will be shown as a nickname to other users

2.2.4) Flexibility

● StudyB, users may introduce extensions or modifications to the information

system without changing the software itself.

● We create our application for Bilkent University students but if we add other

university

2.2.5) Portability and Accessibility

● Portability” is the usability of the same software product in different environments.

● In StudyB we can transfer the same program from different computers. We can

run it everywhere.

3) Final Architecture and Design Details

3.1) Backend Architecture

3.1.1) MSSQL Server Architecture

Figure 1 : MSSQL Entity Relationship Diagram

Chatrooms: The Chatrooms table is responsible for holding all chatrooms' id and name

information. Also Holds Id of each message that is posted to a specific chatroom.

Messages: The Messages table holds text Id of the message, text, fileAddress, and

dateOfPost information for each specific message object.

UserChatrooms: The UserChatroom table is used to create a many-to-many

relationship between Users and Chatrooms tables, Which is an Entity Framework

restriction for creating a many-to-many relationship.

Users: The User Table holds user-related information that is used by many components

of the backend system.

UserRewards: The UserRewards table is used to create a many-to-many relationship

between Users and Rewards tables, Which is an Entity Framework restriction for

creating a many-to-many relationship.

Rewards: The Rewards table holds assigned rewards for users that have achieved

some type of job.

3.1.2) Backend Package Diagram

Figure 2 : Backend Package Diagram

Data Layer: Data Layer classes hold blueprints for entities that are coming from SQL

server and models that are used to manipulate and transfer that data. The Migration

package is responsible for updating the SQL server and helps system and programmers

to keep track of SQL patches that are implemented over a period of time.

Service Layer: The Service Layer includes all controllers that are responsible for

handling and serving requests that are made by outside of the backend system.

Business Layer: The Business Layer handles logic related computations that are

coming from the Service Layer. Also sends requests to the DbContext package so SQL

queries can be carried out.

Mapping: The Mapping Classes is used when the Business Layer or Service Layer

Package classes need a mapping between an entity to model, or model to entity. This

way information can be processed and sent to SQL server or outside system that

requests information.

DbContext: The DbContext class' main job is to turn LINQ queries to SQL queries then

sending those queries to SQL Server. The Business Layer sends requests to DbContext

in the form of LINQ which is transformed via DbContext package.

3.1.2.1) Data Layer Package

Figure 3 : Data Layer Package Diagram

3.1.2.1.1) Entities Package

Figure 4 : Entities Package Diagram

Message: Holds information related with message, used for creating and manipulating

SQL data.

UserChatroom: Creates a link between Users and Chatrooms tables. Used for creating

many-to-many relationship between Users and Chatrooms tables.

Chatroom:Holds information related to chatroom, used for creating and manipulating

SQL data.

UserRewards: Creates a link between Users and Rewards tables. Used for creating

many-to-many relationship between Users and Rewards tables.

Reward: Holds information related toreward, used for creating and manipulating SQL

data.

User: Holds information related to user, used for creating and manipulating SQL data.

3.1.2.1.2) Models Package

Figure 5 : Modals Package Diagram

All Data Transfer Objects are used for mapping entities to processable object type.

Entities that are mapped to a Dto model can be used for data manipulation and

returning data from the backend server.

ChatroomDto: Used for mapping Chatroom entity to ChatroomDto model.

ChatroomForCreationDto: Used for creating Chatroom entity from the

ChatroomForCreationDto model.

MessageForCreationDto: Used for creating Message entity from the

MessageForCreationDto model.

UserForCreationDto: Used for creating User entity from the UserForCreationDto

model.

RewardDto: Used for mapping Reward entity to RewardDto model.

MessageWithUserDto: Used for mapping Message entity to MessageWithUserDto

model.

MessageDto: Used for mapping Message entity to MessageDto model.

UserWithRewardDto: Used for mapping UserWithReward entity to

UserWithRewardDto model.

3.1.2.2) Service Layer Package

Figure 6 : Service Layer Package Diagram

studyRepository Attribute: Each Controller class uses a studyRepository object to

handle logic related computations to handle and serve requests that are coming from

outside of the system.

mapper Attribute: Each Controller class uses a mapper object to map entities to

models and models to entities to process further or serve a request.

ChatroomsController: Handles and serves chatroom related requests.

● GetChatrooms(): IEnumerable<ChatroomDto>: Returns all chatroom objects

as JSON object in a format of ChatroomDto model.

● GetEnrolledChatrooms(userId : Guid) : IEnumerable<ChatroomDto>:

Returns all chatroom objects that a specific user enrolled as JSON object in a

format of ChatroomDto model.

● GetChatroom(chatroomId : Guid) : ChatroomDto: Returns a single Chatroom

with given chatroomId as JSON object in a format of ChatroomDto model.

● GetChatroomMessages(chatroom : Guid) : Messages: Returns all messages

of a specific chatroom as JSON object in a format of MessageDto model.

● GetChatroomsWithContent() : IEnumerable<ChatroomsWithContentDto>:

Returns all chatrooms with its content as JSON objects in a format of

ChatroomDto model. This function is for testing purposes.

● CreateChatroom(chatroom : ChatroomForCreationDto) : ChatroomDto: Gets

a JSON object and calls responsible functions to create a chatroom then returns

its values as JSON object.

MessagesController: Handles and serves message related requests.

● GetMessages() : IEnumerable<MessageDto>: Returns all message objects as

JSON object in a format of ChatroomDto model. For testing purposes.

● GetChatroomMessage(messageId) : MessageDto: Get a message with a

specific messageId and return its values as JSON object in MessageDto model

type.

● CreateChatroomMessage(chatroomId : Guid, userId : Guid, message :

MessageForCreationDto) : MessageDto: Responsible for calling related

functions by using userId, message, and chatroomId variables. This function

helps posting a message to a chatroom then returns the message values as

JSON objects in MessageDto model type.

● DeleteMessage(messageId : Guid) : void: Responsible for calling related

functions by using messageId. Returns 404 or 200 and deletes if requested id is

true.

UserController:

● GetUsers() : IEnumerable<UserDto>: Returns all user objects as JSON object

in a format of UserDto model.

● DeleteUser(userId) : void: Responsible for calling related functions by using

userId. Returns 404 or 200 and deletes if requested id is valid.

● GetUser(userId) : UserDto: Returns single user objects by using userId as

JSON object in a format of UserDto model.

● GetUserWithRewards(Guid userId) : UserWithRewardDto: Returns all

rewards that a user with userId has earned as a JSON object in a format of

UserWithRewardDto model.

● CreateUser(user : UserForCreationDto) : UserDto: Responsible for calling

related functions by using userForCreationDto object. This function helps create

a user then returns the user values as JSON objects in UserDto model type.

RewardsController:

● GetRewards() : IEnumerable<RewardDto>: Returns all reward objects as

JSON object in a format of RewardDto model. For testing purposes.

● GetReward(rewardId : Guid) : RewardDto: Returns a reward object as JSON

object in a format of RewardDto model. For testing purposes.

● GetUserRewards(userId : Guid) : IEnumerable<RewardDto>: Return all

rewards that are earned by user with userId.

● SetUserReward(userId : Guid) : RewardDto: Creates a reward for users.

EnrollmentController:

● EnrollChatroom(chatroomId : Guid, userId : Guid): Enrools a user to a

chatroom by using userId and chatroomId Guid data types.

3.1.2.3) Business Layer

Figure 7 : Business Layer Diagram

IStudyRepositoy:

● GetUser() : User: Returns a Users rows from database.

● GetUsers() : IEnumerable<User>: Returns all Users rows from database.

● DeleteUser() : void: Deletes a specific user.

● GetChatroom() : Chatroom: Returns all Users rows from database.

● AddUser(): void: Adds a specific user.

● UserExist(userId : Guid) : boolean: Checks if user with userId exists.

● IsUserValid(userId:Guid) : boolean: Checks if user’s username, firstname, and

lastname are valid for creation.

● IsEmailValid(userId: Guid) : boolean: Checks if user’s email is valid for

creation.

● GetChatrooms():IEnumerable<Chatroom>: Returns all Chatrooms rows from

database.

● GetChatroomWithContent(Id : Guid): Chatroom: Returns a Chatrooms rows

from database with Messages rows included. Testing purposes.

● GetChatroomWithContent(): List<Chatroom>: Returns all Chatrooms rows

from the database with Messages rows included. Testing purposes

● ChatroomExist(chatroomId : Guid) boolean: Checks if user with chatroomId

exists.

● AddMessage(chatroomId : Guid, userId : Guid, message : Message): Adds

the message to database with given userId and chatroomId.

● AddChatroom(chatroom : Chatroom) : Chatroom: Creates a chatroom with a

given Chatroom entity.

● IsChatroomNameValid(chatroom : Chatroom) : boolean: Checks if chatroom

name is valid or not.

● GetChatroomsWithUserId(userId : Guid) : IEnumerable<Chatroom>: Returns

all rows that userId is included in UserChatrooms table.

● GetMessages() : List<Message>: Returns all Messages rows from database.

● AddUserChatroom(chatroomId : Guid, userId : Guid) : boolean: Enrolls a

user with userId to chatroom with chatroomId.

● GetUserWithRewards(userId : Guid) : User: Returns all rewards of a specific

user with userId.

● GetRewards() : List<Reward>: Returns all available reward types.

● GetReward(rewardId : Guid): Reward: Return a specific reward with rewardId.

● DeleteMessage(messageId : Guid) : void: Remove a specific message with

messageId

● GetUserRewards(userId : Guid) : IEnumerable<Reward>: Return all rewards

of a specific user.

● AddUserReward(userId : Guid, rewardId : Guid) : boolean: Adds a specific

reward with rewardId to user with userId.

3.1.2.4) Mapping

Figure 8 : Mapping Diagram

All profile classes hold schemas for how entity to model and model to entity mapping

should be done. Automapper is used for automatic mapping.

3.1.2.5) DbContext

Figure 9 : DbContext Diagram

BuddyLibraryContext:

● OnModelCreating(modelBuilder : ModelBuilder) : void : On startup creates a

model based on the DbSet objects that are provided and responsible for sending

SQL queries and receiving Data from the database server.

3.2) Frontend Architecture

3.2.1) Class Diagram

Figure 10 : Frontend Class Diagram

Sign : Sign package is responsible for handling signing in and signing up to the

application. SignUpPage will handle the taken data and send it to the database for

enrollment. SignInPage will handle taken data and send it to the database for approval

then it will direct the user to the FeedPage with the help of NavigationPage.

SignUpPage :

● coursepage() : void : This method will direct users to the course list after they

have signed up.

● onSubmit(values : String) : void : This method will take the data from users in

order to enroll in the application. Taken values will be sent to the database and

user’s information will be added to the database.

SignInPage :

● feedpage() : void : This method will direct the user to the main page of the

application.

● signuppage() : void : This method will direct the user to the sign up page of the

application.

● onSubmit (values : String) : void : This method will take the given values by

user and compare user information with the database to check if that user has

signed up to the application. Username and password are checked.

● renderTextInput(field : String) : void : This method will take the values and

render them with <InputText> which is defined in InputText class.

InputText :

● componentDidMount() : void : This method will set the value which is defined

as a global variable.

● onChangeText (value : String) : void : This method will update the value when

it is changed by the user.

Navigation : Navigation package has NavigationPage which keeps all the pages for

direction between other packages. MainPage is basically the first page of our

application.

MainPage :

● signin() : void : This method will direct the user to sign in page.

● signup() : void : This method will direct the user to sign up page.

NavigationPage : This class includes only render method as default and the pages of

application are defined as Scene in <Stack> of React Native [1].

Profile : Profile package has two classes inside which is ProfilePage and RewardPage.

ProfilePage keeps the information of users such as her/his name, surname, department

and enrolled courses. From enrolled courses in the profile page, users can go to the

chatroom of that specific course.

ProfilePage :

● routeToChatRoom(chId : UUID) : void : This method will update the online

chatroom id with the taken parameter and direct the user to that post page.

● postpage() : void : This method will direct the user to the post page.

● rewardpage() : void : This method will direct the user to the reward page.

● componentDidMount() : void : This method implements two database

connections. One connection is for the name and the surname of the current user

and second one is for taking the enrolled courses of that user.

RewardPage :

Feed : Feed package has only a FeedPage class inside which is the main screen of our

application. It can be seen 4 options in the main screen which are Profile, Courses,

Reward and Chatroom. Users will be directed to his/her profile,courses, rewards and

chatroom with the given functions.

● coursepage() : void : This method will direct the user to the courses page.

● profilepage() : void : This method will direct the user to his/her profile page.

● rewardpage() : void : This method will direct the user to the reward page.

● courseslist() : void : This method will direct the user to the lists of courses.

● mainpage() : void : This method will direct the user to the sign in - sign up page

of the application.

Post : Post package has 3 classes inside which are PostPage, PostInput and PostItem.

PostPage is the place to send your message to the course and see the old messages.

With postSomething method users send their messages. ComponentDidMount is used

to get older messages of the course.

PostItem: This class will be the list of posted messages that are taken by PostInput

class and the elements of the PostItem class are listed and shown in the Post Screen

via database.

● GoalItem() : void: This method will show the posted message with user, date

and time information and with a delete button in the listed view in the Chatrooms

Screen.

PostInput: This class takes the user input post.

● GoalInput() : void : This method will take the user input post with variables

passed from the addGoalHandler() method and save it to the array.

● addGoalHandler() :void : This method will take the user input when the post

button is pressed and sets the input to the variables that will be used in the

GoalInput() method.

PostPage:

● addGoalHandler(goalTitle : String) : void : This method generates a unique id

of posted message for database system and then adds it to the current posts, the

value of the element will be the posted message as string.

● removeGoalHandler(goalId : UUID) : void : This method deletes the posted

message from screen by using it’s unique id, after that method is executed the

post wanted to delete is no longer seen in the chatroom.

● cancelGoalAdditionHandler() : void : This method will stop the methods used

for posting messages by setting the boolean parameter to false.

● componentDidMount() : void : This method will take the messages of the

current selected course from the database.

● handleTextChange(inputText : String) : void : This method will take the given

comment and update the global variable comment with its parameter.

● getCourseName() : void : This method will take the name of selected course

name for post page from database.

● postSomething() : void : This method will use the global variable comment to

send the user's post to the database.

Course : Course package has 2 classes inside. CoursesList is defined for listing the

whole courses and directed to the course chatroom of the course. In CoursePage, users

can see the whole courses and enroll in them with the enrollToChatroom(chId) method.

CoursesList :

● postpage() : void : This method will direct the user to the post page of the

course.

● componentDidMount() : void : This method will take the chatroom from the

database.

● routeToChatRoom(chId : UUID) : void : This method will take the chId which is

selected by the user and update the online chatroom id. Later on the direction of

the user to post page is done with the postpage() method.

CoursePage :

● feedpage() : void : This method will direct the user to the main page of

application.

● componentDidMount() : void : This method will take all chatrooms from the

database.

● enrollToChatroom(chId : UUID) : void : This method will take the selected

chatroom id and enroll the user to that course by posting the online user id to the

database.

3.2.2) Use Case Diagram

Figure 11: Use Case Diagram of Frontend Navigation System

There are 4 different screens in the StudyB project that differ in function areas that

can be accessed from the main page, these are chatrooms screen, rewards screen,

profile screen and courses screen as you can see in the use case diagram below

(Figure 11). Different scenarios that illustrate the use of the program are given below.

Name Enroll To A Course

Primary Actors User

Precondition 1. The user must sign in

Postcondition -

Main Scenario Tom clicks the courses page icon
in the main screen.
He finds the course that he wants
to enroll in.
Tom clicks the enroll button and
enrolls to the course.

Name Post A Message

Primary Actors User

Precondition 1. The user must sign in

Postcondition -

Main Scenario 1. Tom clicks the chatrooms page
icon in the main screen.

2. He clicks the chatroom button of
the specific course that he wants
and goes to that chatroom.

3. Tom clicks the post button and
writes his message.

4. He clicks the post button and posts
his message.

4) Development/Implementation Details

4.1) Backend Development

We preferred Visual Studio for our backend development IDE for many reasons

such as easy to use and easy to integrate functionalities. Also we used ASP.NET and

Entity Framework core for our frameworks for development.

We wanted to separate client and server from each other as it should be done to

ensure both parts of the project can evolve separately. Stateless API is needed so we

could handle many requests with agility and precision while not compromising the

completeness of requested data. To solve the coupling problem which occurred when

many components of a system are interlinked with each other and changes in the bigger

systems can be very problematic and painful, we used the Layering technique to

decouple our system and relieve future problems. Which allowed the development of

API a lot easier because we were able to use code-first to implement Backend API.

Because of these reasons we choose to implement RESTful API architecture for

backend API.

ASP.NET is used for creating general data flow between components and serving

data to client systems. This is done via using Controller components which called

related classes and functions as needed and helped to transfer the related data to the

client and to the database. Also, the Business Layer component is also done via

ASP.NET so that data can be manipulated then it could be returned or saved to the

database.

Entity Framework Core is used to create the database, updating the database,

reading, updating, or deleting information from the database. This is done via Model,

Entity, Migration, and DbContext components. The Model component created schemas

for entities that the API wants to manipulate. The Entity component is used as a

blueprint for the database creation and to gather and update information from the

database. The migration component controlled the changes and initial rules for creating

the database. And Lastly, DbContext is used blueprint in the Entity component and

Migration component rules to create the database. DbContext component also used for

the translation of the LINQ query to the SQL query, which is used for querying the

database tables.

MSSQL is used mainly due to Entity Framework Core allows easy usage of

MSSQL, which is generated by using Entity Framework Core.

4.2) Frontend Development

In our application we preferred to use React Native since it's compatible with both

IOS and Android based devices. Visual Studio Code is used as a development tool.

Node.js is used to run JavaScript files on browsers. For managing the packages,

Homebrew and npm is installed and used.

According to our predefined packages needed components are created. As

dependencies we have used Babel, Jest and many other react-native packages through

npm. Connection of the database with frontend design is implemented with the

react-native-axios package. The architecture in React Native is Flux with the Redux

framework which is different from MVC architecture. In React Native, different

components can be created and then combined to create a view. In StudyB, we have

preferred to create different components for every view. Each component is able to

handle its own data also. As a simulator for IOS, XCode Simulator is used with Metro

Bundler. We have implemented our application only for IOS.

Expo framework and tools were used in the first stage to design the screens. Thanks

to the feature that the changing code provided by Expo CLI can be displayed in

simulators and emulators connected via Metro Bundler instantly, the designs of the

screens have been arranged according to different devices and Visual Studio Code has

been used during the editing phase. The design components and JavaScript files used

in the screens whose designs have been completed were easily transferred to the

project because they have the same structure as our project that we use the React

Native CLI.

Web version of our system, we used webstorm to develop our desktop edition. We

designed our login page for sign-in and home page to show our list of course.

5) Testing Details

5.1) Backend

We used Postman and Visual Studio Debugger for testing.

5.1.1) Postman

Postman is used for generating automated tests for the backend. By using

Postman HTTP request scripts are generated and the backend cloud server and local

server are tested with these automated scripts after each iteration. During

implementation phases postman is also used for testing purposes to check whether or

not the system is functioning correctly. Postman helped me by allowing me to easily

analyze HTTP headers request bodies and content-type of the requests. I frequently

checked if the header and content-type are matching with each other.

5.1.2) Visual Studio Debugger

The Visual Studio Debugger is greatly utilized during testing and implementation.

The Visual Studio Debugger is used to trace steps of the function calls. This way

possible problems in the code can be inspected and fixed.The Visual Studio Debugger

allows the program to run line by line and while logging and showing changes in

variables. This functionality allowed me to inspect code steps in detail and find defects

or parts.

5.2) Frontend

React Native online debugger in Google Chrome is used for testing the

functionality of classes of frontend. XCode Simulator is also used to test the functionality

and user interface of the application.

In addition to using the Expo framework and tools to design screens, it was also

used to test the appearance of design elements on different devices. Design elements

and component codes designed by Expo CLI have been tested with real Android and

IOS devices, as well as simulators and emulators connected via Metro Bundler. The

ability to instantly view the code changes made by Expo CLI on the device screens

provided a great convenience in terms of testing. The design components and

JavaScript files used on the screens whose designs and tests have been completed on

different devices have been transferred to our project where we use React Native CLI.

6) Maintenance Plan and Details
Maintaining is an important issue for our project. For this reason, we concentrated

on code ease of use for our future works. At the point when we include some new

highlights, this will assist us with improving our venture with no issue. Another issue

about upkeep is fixing bugs. Also concatenating with the front end part to the backend in

this corona period is harmful to us. It might be the most significant part of our venture

because there will be a few bugs emerge unquestionably, and it is these bugs that must

be fixed.

The database is a significant piece of StudyB because we need to store students'

information and university lectures in our database. Because all client and occasion data

is held in the database, likewise our database develops with new clients and occasions,

which will be an issue to keep up the venture.

We focused on code usability for our future works. When we add some new

features, this will help us to improve our project without any problem. Rather than our

application part we add a desktop edition to our project. Students are studying their

lectures online and desktop editions will help them to communicate easily. Another issue

about maintenance is fixing bugs in every stage. It is really important for our most

important aspect of our project because in every stage we have a

7) Other Project Elements

7.1) Consideration of Various Factors

In this project we are faced with some factors that affected the way of the StudyB

which are mainly; lack of experience, time, communication, deciding on tools and cost.

● Lack of experience : This was the most important factor because none of us

were experienced on IOS projects so we had to learn how to use new technologies and

to write in new languages.

● Time : Time was very crucial because we all were very busy with other courses

too. So we scheduled meetings almost regularly and discussed our progress plan.

● Communication : However the first semester we were able to communicate

directly face to face, the second semester was very difficult for us to communicate

because of the lock down due to COVID-19. We were only able to communicate through

Zoom, Whatsapp and Github, this was not always enough and sometimes created

communication problems but we did our best to finish this project.

● Deciding on Tools : There were so many options for both the backend and the

frontend development of our project. We spent some time discovering and evaluating

new tools which we were unfamiliar with to decide which ones to use for our project.

● Cost : This was another factor which we considered because some of the tools

were available with a cost. Because of this we searched for free options.

Factors Lack of
Experienc
e

Time Communication Deciding
on Tools

Cost

Level of the
factor
(1 - 10)

10 8 8 5 2

7.2) Ethics and Professional Responsibilities

StudyB aims to help students in their university life in the best way. To do this

StudyB will be updated for any new requirements or feedback from the users and

provide its users with its best features. To make StudyB's features as efficient as

possible; users' Bilkent emails, courses, exam dates, attended study rooms, activities on

the platform will be stored in the database. The conversation that was in the chat room

among users will not be saved as data to preserve personal rights. According to

GDPR(which is KVKK) in Turkey, you cannot save a person's information.

Information that is taken from users will not be shared with any third party datasets

and saved only for the developer team to develop StudyB better for users. There is

going to be a privacy policy which explains how the collected data will be used. Users

are going to be able to access and read this documentation in application.

In terms of professionality of our application, only Bilkent users will be accepted to

the system. There will not be any access from outside with another email extension

except ug.bilkent.edu.tr. Users are going to be able to communicate with people from

campus so the documentations shared by users will be available only for Bilkent

students.

7.3) Judgements and Impacts to Various Contexts

Judgment Description :

Creating a scoring system

 Impact Level Impact Description

Impact in Global
Context

Low Our application is local to Bilkent
Computer Science but we can
widen this.

Impact in Economic
Context

None

There is no economic impact to
this judgement.

Impact in
Environmental Context

None There is no environmental impact
to this judgement.

Impact in Societal
Context

High Creating a scoring system is very
important to create an equal social
environment in the application.

Judgment Description :

Only corresponding university emails will be accepted

 Impact Level Impact Description

Impact in Global
Context

High Our application will accept only
the corresponding university
emails to sign up which is now
limited with bilkent student emails.

Impact in Economic
Context

None

There is no economic impact to
this judgement.

Impact in
Environmental Context

None There is no environmental impact
to this judgement.

Impact in Societal
Context

High Creating a university based social
environment will keep unwanted
users away.

Judgment Description :

Creating an online contribution based application for
university students

 Impact Level Impact Description

Impact in Global
Context

Medium Our application are for university
students only and brings them
together

Impact in Economic
Context

High

Creating an online platform lowers
the paper work per individual
students

Impact in
Environmental Context

High Creating an online platform lowers
the paper work per individual
students

Impact in Societal
Context

High Creating a contribution system
encourages people to become more
sharing and helpful towards each
other in the university community

7.4) Teamwork and Peer Contribution

Our team environment helped us learn about new technologies and tools. We

scheduled meetings regularly during the first semester and almost regularly during the

second semester(due to COVID-19 lock down). We shared leadership during the

process and divided the project workload into two sections as backend and frontend.

● Alara Yaman : In the brainstorming part of the project I found the name of the

project and some of the features such as synchronization of the google calendar

and exam tips. If the students added their exams, we can make some

notifications to remind them of the exam (our future work plan part8). For the

coding part, I first tried to help frontend implementation learn react study tutorials

but I am really behind the team. Later focused on the web application of the

project. Learn webstorm to develop our project. In the desktop version, create

login authentication, home page, course list design and do implementations.

● Berfu Deniz Kara : Created the project idea and added many of the features as

ideas. Reviewed and edited all the reports before submitting. Got in touch with

the jury members and the supervisor for the project during the process. Tried to

catch up with first the backend and then the frontend but couldn’t so no code

contribution.

● Betim Doğan : Frontend design of the application is implemented and tested,

then completed with Sera and Mert. Researched different native frameworks and

suggested the React Native to the team members. Screens and UI elements are

designed as components for specific screens and tested via EXPO CLI. Some of

the functionalities of some screens are implemented and then finalized by Sera

and Mert.

● Mert : Designed and implemented the Backend API, integrated with

cloud(Microsoft Azure), tested for defects and automated tests for backend. The

Frontend design of the application is implemented and tested, then completed

with Sera and Betim. Some of the functionalities of some screens are

implemented and then finalized by Sera and Betim. Created logo, Implemented

presentation web page, designed system architecture, made a research about

tools, frameworks, and system architecture. After searching and gathering

knowledge about tools, frameworks, and system architecture, I decided which

ones are best suits for our case. I made contact with our supervisor and updated

him about the project progress. Lead both the Backend and the Frontend team

teams. I made research about libraries that my friends can use and forwarded

them. Come up with a daily scrum meeting idea and oversee its implementation. I

made a prototype web application that receives data from the backend server

and sends data to the backend server. Which includes 3 pages as SignUp,

SignIn, and CourseList pages.

● Sera Fırıncıoğlu : Frontend of the application is implemented and completed

with Mert and Betim. Functionalities of the pages, methods and their connections

with the database are implemented and tested. All database connections are

tested for the frontend part and tried to handle the given data with the most

efficient way in code. In the code part, I have also concerned to write efficiently,

readable and understandable for everyone. I have tried to learn React Native

and search for many features of it while writing the code.

7.4.1) Backend Peer Contribution

Back-end Lead: Mert Özerdem

Back-end Team: Mert Özerdem

Back-end all workload, code written: Mert Özerdem (All packages and responsible

member listed below):

● Controller Package: Mert Özerdem

● DbContexts Package: Mert Özerdem

● Entities Package: Mert Özerdem

● Models Package: Mert Özerdem

● Migrations Package: Mert Özerdem

● Profiles Package: Mert Özerdem

● ValidationAttributes Package: Mert Özerdem

● Program and Startup Packages: Mert Özerdem

● Back-end MSSQL Database: Mert Özerdem

● dbo Package: Mert Özerdem

● Back-end Automation and Testing: Mert Özerdem

● Postman test and automation scripts: Mert Özerdem

● Back-end Excel documentation on how to use back-end: Mert Özerdem

● Request Guide: Mert Özerdem

● Back-end Azure integration: Mert Özerdem

Evidence Of Work:

● https://github.com/MertOzerdem/StudyB/graphs/contributors

● https://github.com/MertOzerdem/StudyB

Figure 12 : Backend Github Contribution Insight

7.4.2) Frontend Peer Contribution

Front-end Team: Mert Özerdem, Sera Fırıncıoğlu, Betim Doğan, Alara Yaman, Berfu

Deniz Kara

Front-end workload and code written:

Navigation package: NavigationBar.js / MainPage.js / NavigationPage.js

● Team Lead: Sera Fırıncıoğlu

● Code owner: Sera Fırıncıoğlu

● Designer: Betim Doğan

● Integration: none needed

https://github.com/MertOzerdem/StudyB/graphs/contributors
https://github.com/MertOzerdem/StudyB

Post package: PostPage.js / PostItem.js / PostInput.js

● Team Lead: Mert Özerdem

● Code owner: Sera Fırıncıoğlu / Mert Özerdem

● Designer: Betim Doğan

● Integration: Mert Özerdem / Sera Fırıncıoğlu

Sign package: SignUp.js / SignIn.js / InputText.js

● Team Lead: Sera Fırıncıoğlu

● Code owner: Sera Fırıncıoğlu / Mert Özerdem

● Designer: Betim Doğan

● Integration: Mert Özerdem / Sera Fırıncıoğlu

Profile package: ProfilPage.js / RewardPage.js

● Team Lead: Sera Fırıncıoğlu

● Code owner: Sera Fırıncıoğlu / Mert Özerdem

● Designer: Betim Doğan

● Integration: Mert Özerdem / Sera Fırıncıoğlu

Course package: CoursePage.js / CoursesList.js

● Team Lead: Mert Özerdem

● Code owner: Sera Fırıncıoğlu / Mert Özerdem

● Designer: Betim Doğan

● Integration: Mert Özerdem / Sera Fırıncıoğlu

Feed package: FeedPage.js

● Team Lead: Betim Doğan

● Code owner: Sera Fırıncıoğlu

● Designer: Betim Doğan

● Integration: Sera Fırıncıoğlu

Web Authentication package: SingIn.js / SignUp.js

● Team Lead: Alara Yaman

● Code owner: Alara Yaman

● Designer: Alara Yaman

● Integration: Alara Yaman

Web Home package: dashBoard.js

● Team Lead: Alara Yaman

● Code owner: Alara Yaman

● Designer: Alara Yaman

● Integration: Alara Yaman

Web Course package: CoursePage.js / CoursesList.js

● Team Lead: Alara Yaman

● Code owner: Alara Yaman

● Designer: Alara Yaman

● Integration: Alara Yaman(not finished yet will be tested on 1th of June, is in the test

branch)

Evidence Of Work:

● https://github.com/serafirincioglu/StudyB_Frontend

● https://github.com/serafirincioglu/StudyB_Frontend/graphs/contributors

● https://github.com/serafirincioglu/StudyB_Frontend/tree/test

https://github.com/serafirincioglu/StudyB_Frontend
https://github.com/serafirincioglu/StudyB_Frontend/graphs/contributors
https://github.com/serafirincioglu/StudyB_Frontend/tree/test

Figure 13 : Frontend Github Contribution Insight

(web version is on the test branch and does not shown here)

7.5) Project Plan Observed and Objectives Met

The project plan observed is not coinciding with all the milestones we set at the

beginning of this project. Lack of experience, time management and the lock down due

to COVID-19 were the main reasons for that. We set our milestones as database, user

interface, frontend development, backend development and testing. We accomplished

these milestones at large scale but there were some parts that we could not implement.

These parts are; creating an Android version of the project, creating a better scoring

system, a web version of the application, synchronizing the exam dates with the user’s

google calendar, add exam tips and creating a convenient messaging system such as

swearing-forbidden posts and chats.

7.6) New Knowledge Acquired and Learning Strategies Used

7.6.1) Things We Learned

7.6.1.1) React Native

React Native is an open-source mobile application framework that enables to build

native applications easier [3]. It is based on the React library but it targets mobile

platforms. A mixture of JavaScript and XML-esque markup, known as JSX is used in

React Native applications. Also React Native exposes JavaScript interfaces for different

platform APIs.

7.6.1.2) Visual Studio Code

As an application development IDE, the frontend team of the project used Visual

Studio Code. Visual Studio Code is one of the most common IDE. Since Github is also

integrated with Visual Studio Code, it was easier to develop and to see the changes.

Another reason why it is chosen is its user friendly interface.

7.6.1.3) Github

Github is a website and an open-source version control system. We used Github to

be able to code our project simultaneously together [2].

7.6.1.4) NodeJs

NodeJs is an open source web service development framework. It runs Javascript in

the background and builds scalable network applications. NodeJs is recommended to

use with React Native for its efficiency.

7.6.1.5) Npm

Npm is used to adapt and manage many extra packages in our application. Npm is

compatible with JavaScript and recommended by React Native to develop.

7.6.1.6) Expo CLI

Expo is a toolchain that's designed around React Native to help users launch apps

faster [3]. It consists of tools that simplify React Native app development and testing,

and consists of user interface components and services that are usually available in

third-party native React Native components.

7.6.1.7) Visual Studio

Visual Studio is used to develop our Front End application. It has two types. Visual

studio and visual studio code. Visual Studio Code is a code editor redefined and

optimized for building and debugging modern web and cloud applications [8]. For react

development we used visual studio code. It is free, runs everywhere and easy to use.

Some of our group members have MacBooks, some of them are using their Microsoft

computers. On both platforms, we can run it easily.

7.6.1.8) Postman

Postman is a collaboration platform for API development. Postman's features simplify

each step of building an API and streamline collaboration so you can create better

APIs—faster [7]. It has six parts. API client, automated testing, design and mock,

documentation, monitors and workspaces. In our project we chose postman because it

is easy to use, has wide support for all APIs and extensible. We used it for generating

automated backend test parts. In the backend implementation part, we used postman

for testing.

7.6.1.9) Asp.Net

Asp.Net is an open source web framework for building modern web apps and

services with .Net [10]. This is a class platform which runs on Windows, Linux and

macOS. We used Asp.Net because our team has Windows, Linux and macOS systems

and we use .Net in our project.

7.6.1.10) Entity Framework Core

Entity Framework Core is a lightweight, extensible, open-source and cross-platform

version of the Entity Framework data access technology. This serves as an

object-relational mapper which enables us to work with a database using .Net objects

and eliminates the need for most of the data -access code that we need to write [7].

7.6.1.11) Microsoft Azure

Microsoft Azure is Microsoft’s public cloud computing platform which provides cloud

services including compute, analytics, storage and networking. We used this to run our

project in the public cloud [5].

7.6.1.12) WebStorm

It is the smartest editor for intelligence code completion. In our project, we add a web

version to StudyB. It enables us to use our application in our computers. To develop

this we chose webstorm because it has tools for web angular, react. Vue.js . Also it has

integration with VCS. Use a simple unified UI to work with Git, GitHub. Commit files,

review changes, and resolve conflicts with a visual diff/merge tool kit [9].

7.6.2) Our Learning Strategies

While developing StudyB we used the internet as a teaching guide. We used various

websites, learning apps and example projects such as Coursera, Udemy and countless

projects from Github. We also consulted our supervisor for some aspects of our project.

Our strategy was to first search the possible ways to go, then try some of them and

deciding on which way is the best fit for our approach. We tried and made many

mistakes and learnt in this manner.

8) Conclusion and Future Work

As a conclusion, our project which is called StudyB is a student based study platform

where Bilkent Computer Science students can sign up with their Bilkent emails and

enroll in classes to create a sharing environment via posts and chats. We developed this

application on the IOS and we tested on Android too. In the application we will add new

features such as google calendar, adding file system, exam tips, different reward

system. Also for the desktop version, we have a login and a home page. It lists the

courses on this page. For the future, we can add a chat part to our web version. For

now, our project is including only Bilkent Computer Science courses but we may add

other departments as well as other universities. We also can add google calendar

synchronization and examp tips to our project as these were brainstormed features at

the beginning. If we expand the usage, we can add an advertisement bar.

At the end, we developed this project for our needs. We are a group of members who

have different classes from different schedules. Some of us are taking lessons from the

upper class, some of us are behind the curriculum. But we do not have friends from our

lessons to ask for notes or study for the exam with. So we developed this application in

order to help and create a contributing environment for students like us.

9) Glossary

9.1) User Manual

When the application is opened there are two options; either sign in or sign up. You

can sign up and create an account with your Bilkent email. After creating an account you

can sign in to the StudyB.

The main page of the StudyB offers four options. If you click the profile icon a

page with your personal data will be displayed. In your profile page you can see your

name, surname, department, your rewards and your courses which you enrolled in.

For this version, StudyB has Bilkent Computer Science Department courses. You

can add Computer Science courses from the courses page which you can access

through clicking the courses icon on the main page. You can see the rewards display

by clicking the rewards icon on the main page. Also the fourth option is to enter to

chatrooms you have.You can see your chat history by clicking the chatrooms icon on

the main page. Another interactive part of the StudyB is to post something in a

course page which can be done by selecting one of the enrolled courses and posting

something.

10) References
[1] Aksonov, “aksonov/react-native-router-flux,” GitHub, 20-Apr-2020. [Online]. Available:
https://github.com/aksonov/react-native-router-flux. [Accessed: 26-May-2020].

[2] K. Brown, “What Is GitHub, and What Is It Used For?,” How, 13-Nov-2019. [Online].
Available:
https://www.howtogeek.com/180167/htg-explains-what-is-github-and-what-do-geeks-use-it-for/.
[Accessed: 26-May-2020].

[3] B. Eisenman, “Learning React Native,” O'Reilly Online Learning. [Online]. Available:
https://www.oreilly.com/library/view/learning-react-native/9781491929049/ch01.html. [Accessed:
26-May-2020].

[4] Y. Kruhlyk, “Expo vs Vanilla React Native Development: What to Choose,” Apiko,
13-Apr-2020. [Online]. Available: https://apiko.com/blog/expo-vs-vanilla-react-native/.
[Accessed: 26-May-2020].

[5] M. Rouse, “What is Microsoft Azure and How Does It Work?,” SearchCloudComputing,
06-Apr-2020. [Online]. Available:
https://searchcloudcomputing.techtarget.com/definition/Windows-Azure. [Accessed:
26-May-2020].

[6] Rowanmiller, “Varlık Çerçeve Çekirdeğine Genel Bakış - EF Core,” Varlık Çerçeve
Çekirdeğine Genel Bakış - EF Core | Microsoft Docs. [Online]. Available:
https://docs.microsoft.com/tr-tr/ef/core/. [Accessed: 26-May-2020].

[7] “The Collaboration Platform for API Development,” Postman. [Online]. Available:
https://www.postman.com/. [Accessed: 26-May-2020].

[8] “Visual Studio Code - Code Editing. Redefined,” RSS, 14-Apr-2016. [Online]. Available:
https://code.visualstudio.com/. [Accessed: 26-May-2020].

[9] “WebStorm: The Smartest JavaScript IDE by JetBrains,” JetBrains. [Online]. Available:
https://www.jetbrains.com/webstorm/. [Accessed: 26-May-2020].

[10] “What is ASP.NET?: .NET,” Microsoft. [Online]. Available:
https://dotnet.microsoft.com/learn/aspnet/what-is-aspnet. [Accessed: 26-May-2020].

